

STUDY OF METALLIC BONDING AND ITS INFLUENCE ON PHYSICAL PROPERTIES OF METALS

Raxmatullayev Muxammadali Muxammadzokir o‘g‘li

Assistant of the Department of Materials Science,

Andijan State Technical Institute

raxmatullaev231@gmail.com

Abstract

This article examines the nature of metallic bonding and its impact on the structural and physical properties of metals. The formation of a metallic bond arises from the electrostatic attraction between delocalized electrons and positively charged metal atom-ions in a crystal lattice. These mobile electrons explain essential metallic characteristics such as electrical and thermal conductivity, luster, strength, and high melting points. The study further highlights the role of inner electron shells in bonding through donor-acceptor interactions. A comparative table of metallic properties and their correlation with bonding strength is also provided.

Keywords

Metallic bond, crystal lattice, delocalized electrons, electrical conductivity, thermal conductivity, bonding strength.

1. Introduction

Metals are known for their unique physical properties—such as high electrical conductivity, malleability, and shine—which distinguish them from other elements. The root cause of these properties lies in the distinct chemical bonding present in metals, known as the **metallic bond**. Understanding the nature of this bond is essential for the field of materials science, particularly in designing new metallic materials and improving existing ones.

2. Methods

The study analyzes the bonding mechanism in metal crystals by reviewing the atomic structure of metals and the formation of their crystal lattices. Observations were based on theoretical analysis and comparison with known physical behaviors of metallic elements under standard conditions. In particular, attention was paid to:

- The nature of **delocalized electrons** in the metallic lattice,
- The **formation of metal atom-ions**,
- The interaction between metal ions and electron clouds (electrostatic forces),
- The **contribution of inner-shell electrons** to the bonding via donor-acceptor mechanisms.

3. Results

The key findings of the study are summarized as follows:

- Delocalized electrons form an "electron gas" that freely moves through the crystal lattice.
- Metallic bonding is strong and non-directional, contributing to the mechanical strength and high melting points of metals.
- The presence of mobile electrons results in excellent thermal and electrical conductivity.
- Inner electrons also play a role in metallic bonding, especially when participating in donor-acceptor interactions with neighboring atom orbitals.

Table 1. Correlation Between Metallic Bonding and Key Properties of Some Metals

Metal	Type of Crystal Lattice	Melting Point (°C)	Electrical Conductivity (S/m)	Bond Strength	Appearance
Copper (Cu)	Face-centered cubic (FCC)	1085	5.96×10^7	High	Reddish, shiny
Iron (Fe)	Body-centered cubic	1538	1.00×10^7	Very High	Grey, shiny

	(BCC)				
Aluminum (Al)	Face-centered cubic (FCC)	660	3.77×10^7	Moderate	Silvery
Sodium (Na)	Body-centered cubic (BCC)	98	2.10×10^7	Low	Silvery white
Tungsten (W)	Body-centered cubic (BCC)	3422	1.79×10^7	Extremely High	Grey-white

4. Discussion

The properties of metals are deeply influenced by their bonding nature. Unlike ionic or covalent bonds, the **metallic bond** is characterized by **electrostatic forces** between a **lattice of positively charged ions** and a 'sea' of **delocalized electrons**. These electrons move freely, leading to conductivity and other metallic traits.

Moreover, **not only valence electrons**, but **electrons from inner shells** can participate in donor-acceptor interactions, strengthening the bond. As a result, metals exhibit **high mechanical strength**, **luster**, **malleability**, and **thermal stability**. The strength of the metallic bond depends on factors such as atomic size, number of valence electrons, and crystal structure.

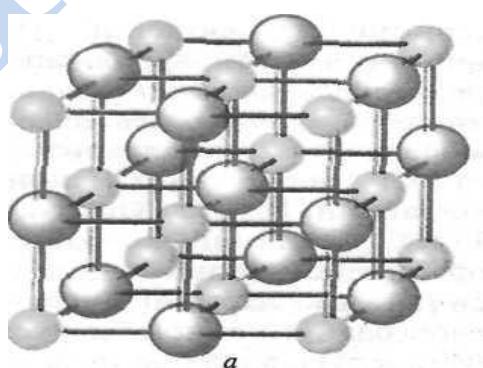


Figure 1. Simple cubic crystal structure of a metal

5. Conclusion

Metallic bonding plays a fundamental role in determining the physical properties of metals. The electrostatic attraction between free electrons and metal ions is responsible for their conductivity, strength, and thermal behavior. Further study of metallic bonds, particularly the role of inner-shell electron interactions, can contribute to developing advanced metallic materials with tailored properties.

References

1. Callister, W.D. (2007). *Materials Science and Engineering: An Introduction*. John Wiley & Sons.
2. Smith, W.F., & Hashemi, J. (2011). *Foundations of Materials Science and Engineering*. McGraw-Hill.
3. Kurnakov, N.S. (1941). *Osnovy metallurgii i fiziko-khimii metallov*.
4. Shubin, Yu.V. (2010). *Kurs obshchey khimii*. Moscow: Vysshaya shkola.
5. Khakimov, N.N. (2025). Lecture materials on bonding in metals. Andijan State Technical Institute.
6. Adkhamov, K. Z., Khalimjonov, T. S., Abdullaev, K. K., Odilov, F. U., & Tadjiev, N. K. (2025). Improving The Mechanical Properties Of Gray Cast Iron By Controlling The Solidification Rate. *Czech Journal of Multidisciplinary Innovations*, 38, 1-5.
7. Adxamov, X. Z., Xalimjonov, T. S., Nazarova, N. T., Turajonov, B. N., & Tulaboyev, D. B. (2025). Quymani qotish tezligini boshqarish orqali kulrang cho ‘yanlarning mexanik xossalariini yaxshilash. *Строительство и образование*, 4(2), 445-449.
8. Khasanov, J., Kholmirzaev, N., Saidmakhamadov, N., Tojiboev, B., Dilshodbek, E., Makhammadjanov, K., ... & Otakuziev, A. (2024). DEVELOPMENT OF TECHNOLOGY FOR OBTAINING THIN-WALLED DETAILS FROM GRAY CAST IRON IN SAND-CLAY MOULDS. *International Journal of Mechatronics & Applied Mechanics*, (18).
9. Fesenko, K., Mogylatenko, V., Fesenko, A., Kosyachkov, V., & Fesenko, M. (2015). Manufacture of two-layers and double-sided iron castings with differential structure and properties. *EUREKA: Physics and Engineering*, (1), 55-59.